Structural Phase Transitions in BaTiO₃ Studied via Perturbed Angular Correlations

J. Roth, M. Uhrmacher, P. de la Presa, L. Ziegeler, and K. P. Lieb II. Physikalisches Institut, Bunsenstr. 7 - 9, Universität Göttingen, D-37073 Göttingen Reprint requests to Dr. M. U.; Fax: +49-551-394493; E-mail: uhrmacher@up2u06.gwdg.de

Z. Naturforsch. 55 a, 242-246 (2000); received August 24, 1999

Presented at the XVth International Symposium on Nuclear Quadrupole Interactions, Leipzig, Germany, July 25 - 30, 1999.

Phase transitions in the ferroelectric perovskite $BaTiO_3$ were studied for 111 In-implanted polycrystalline samples by measuring the electric field gradients by means of Perturbed Angular Correlation spectroscopy. The phase transitions between the orthorhombic \Leftrightarrow rhombohedral \Leftrightarrow tetragonal \Leftrightarrow cubic lattices were investigated in 2 - 10 K steps, for increasing and decreasing temperatures, in order to determine their hysteresis. The transition parameters are compared with results from measurements of the spontaneous polarization, electric susceptibility and neutron scattering.

Key words: Perturbed Angular Correlations; BaTiO₃; Phase Transitions; Hysteresis; 111 In.

1. Introduction

Among the perovskites, BaTiO₃ is the most important ferroelectric compound which is widely used in electromechanical actuators, sensors, ceramic capacitor dielectrics and photo-galvanic devices [1-3]. Its crystal structures, structural and electric phase transitions have been analyzed in much detail using several methods, such as neutron and X-ray diffraction, electric susceptibility, etc. Previous results from Perturbed Angular Correlation (PAC) spectroscopy in BaTiO₃, Ba(TiHf)O₃, and CdTiO₃ using ¹⁸¹Hf/¹⁸¹Ta probes have been reported by Catchen et al. [4 - 6] and by Schäfer et al. [7]. Recently, Uhrmacher and collaborators [8] have published first PAC results in BaTiO₃ using ¹¹¹In/¹¹¹Cd hyperfine probes. Their survey measurements showed the occurence of electric field gradients (EFG) in the non-cubic phases, present below the Curie temperature $T_{\rm C}$ = 393 K. Structural phase transitions can be monitored via PAC, if the hyperfine probe atoms substitute specific cation lattice sites. Several recent studies on perovskites of the type $A^{2+}B^{4+}O_3$ [9, 10] using ¹⁸¹Hf and ¹¹¹In probe nuclei have given evidence that the main hyperfine fraction can be attributed to substitutional B-site implantation

The present PAC measurements for ¹¹¹In/¹¹¹Cd probes in polycrystalline BaTiO₃ samples aim at scan-

ning, in finer temperature steps than in [8], the structural phase transitions, which occur between the cubic phase (I, paraelectric), the tetragonal phase (II), the orthorhombic phase (III), and the rhombohedral phase (IV). The approximate transition temperatures are $T_0 = 193$ K for the IV \Leftrightarrow III transition, $T_0' = 278$ K for the III \Leftrightarrow II transition and $T_C = 393$ K for the II \Leftrightarrow I transition [4 - 6, 8].

2. Experiments

The PAC measurements were carried out for polycrystalline BaTiO₃ powder samples of 99.995% purity which were pressed into pellets, 4 mm in diameter and 0.5 mm thick. Powder X-ray diffraction analyses at room temperature revealed that all observed reflexes could be assigned to the expected tetragonal phase. Some 10¹² ¹¹¹In⁺ ions were implanted at 400 keV ion energy into the samples, using the Göttingen ion implanter IONAS [11]; the implantation depth was about 60 nm. After implantation the samples were annealed for four hours at 1673 K in air in order to remove radiation damage. For the measuring temperatures below 300 K, the samples were mounted at the pole tip of either a closed-cycle helium cryostate (T = 10 - 230 K) or a Peltier element (T = 275 - 296 K). Both cryostates were housed in vacuum chambers at pressures of 10^{-6} - 10^{-5} mbar. Measurements above room temperature

0932-0784 / 00 / 0100-0242 \$ 06.00 © Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

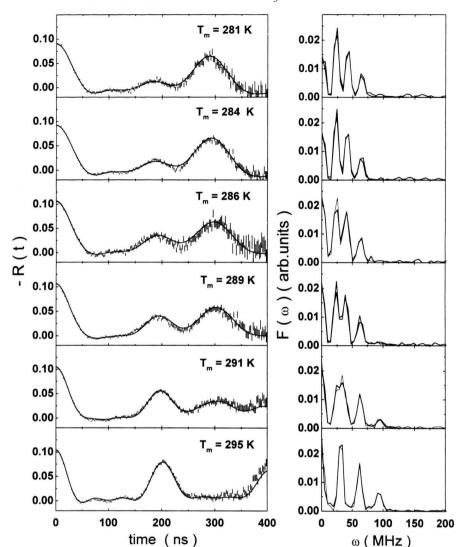


Fig. 1. Perturbation functions R(t) and Fourier transforms $F(\omega)$ measured across the III \rightarrow II phase transition.

were carried out under air in an oven of low γ -ray absorption. We estimate that the given temperatures are correct within better than ± 0.4 K.

The PAC spectra were accumulated using a setup of four NaI(Tl) detectors in 90° geometry. The perturbation functions R(t) were fitted by assuming, at each temperature, two fractions f_i and $f_k = 1$ f_i , which are characterized by their respective *static* EFG parameters [12], i. e. the quadrupole frequency ν_Q , asymmetry parameter η and frequency width δ . Figure 1 illustrates the evolution of the perturbation function R(t) and its Fourier transform $F(\omega)$ across the III \Rightarrow II phase transition, where the temperature was increased from 281 K to 295 K. Evidently, as shown in Fig. 2, the hysteresis of this phase transition shows up via the temperature dependences of the two competing fractions $f_{\rm III}^{\uparrow/\downarrow}$ and $f_{\rm II}^{\uparrow/\downarrow} = 1 - f_{\rm III}^{\uparrow/\downarrow}$, for increasing or decreasing temperature. Finally, Fig. 3 displays the II \Rightarrow I phase transition which occurs very suddenly.

3. Electric Field Gradients and Site Occupation

The deduced EFG parameters for ¹¹¹Cd (and for ¹⁸¹Ta [4-6]) measured in the various phases of BaTiO₃ are listed in Table 1. In the case of the ¹¹¹Cd probes, one notes symmetric EFG's in the phases II and IV ($\eta_{IV} = \eta_{II} = 0$), while the EFG of the phase

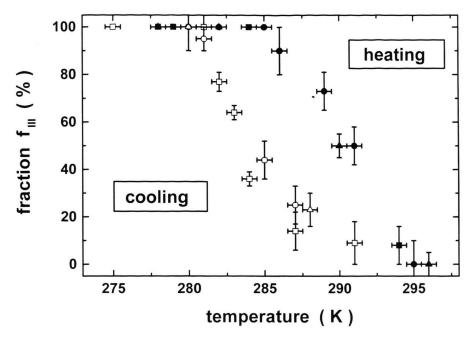


Fig. 2. Hysteresis of fraction III when heating (dots) or cooling (open squares) the sample across the III \rightarrow II phase transition.

Table 1. Electric field gradients of 111 Cd and 181 Ta probes in BaTiO₃.

	— 111 Cd —			— ¹⁸¹ Ta [4 - 6] —			
Phase	<i>T</i> (K)	$^{\nu_{\rm Q}}_{\rm (MHz)}$	η	$\frac{\delta}{(\text{MHz})}$	<i>T</i> (K)	$^{\nu_{\rm Q}}_{\rm (MHz)}$	η
IV, rhomboh.	80	6.3(24)	0	3.1(16)	80	63(17)	0
III, orthorh.	227	22.0(8)	0.37(6)	1.1(6)	220	137(12)	0.4(1)
II, tetrag.	293	33.3(7)	0	1.4(5)	293	205(12)	0
I, cubic	475	0	0	43(10)	400	0	0

III is asymmetric, $\eta_{\rm III} = 0.37(6)$. All EFG's are well defined, with the width parameters being only $\delta = 1$ - 3 MHz. When comparing the EFG parameters for ¹¹¹Cd and ¹⁸¹Ta probes, we note that the asymmetry parameters η agree fairly well for the various phases. Furthermore, the ratios of the quadrupole frequencies $\nu_{\rm Q}$ for both probes agree with the ratio $\nu_{\rm Q}(^{181}{\rm Ta})/\nu_{\rm Q}(^{111}{\rm Cd}) = 6.5(10)$ predicted by the point charge model for the B-site, if we infer the appropriate quadrupole moments and Sternheimer factors of the two probe nuclei. This agreement of asymmetry parameters and frequency ratios thus strongly supports that both types of probe ions are being implanted into the B-site and substitute Ti. This conclusion is supported by PAC measurements with ¹⁸¹Hf/¹⁸¹Ta probes in SrHfO₃ and BaHfO₃ perovskites, following

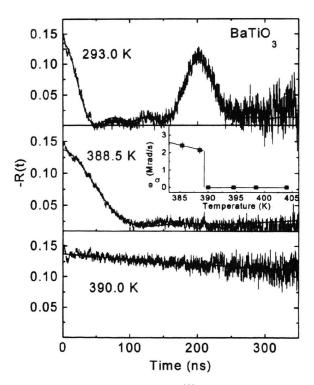


Fig. 3. Perturbation functions for 111 Cd in BaTiO₃ as observed near the II \rightarrow I phase transition. The inset shows the temperature dependence of the quadrupole frequency ω .

neutron activation of 180 Hf [9], and in our previous paper on 111 In/ 111 Cd in BaTiO $_3$ [8]. Similar results have also been discussed by Luthin et al. [13] for 111 Cd in ZrO $_2$ and HfO $_2$ and by Wiarda et al. [14] for a large number of other binary oxides.

4. Phase Transition Parameters

Let us now discuss, for the three phase transitions in BaTiO $_3$ considered, the temperature dependence of the fractions $f^{\uparrow/\downarrow}$ that reveal the hysteresis. As usual, we introduce the transition temperatures T_0^{\uparrow} and T_0^{\downarrow} , at which the two competing fractions are equal when increasing or decreasing the temperature across a phase transition. The quantity $\delta T_0 \equiv |T_0^{\uparrow} - T_0^{\downarrow}|$ measures the width of the hysteresis. The "smoothness" of a phase transition can be expressed by the quantities ΔT^{\uparrow} and ΔT^{\downarrow} , where we used the approximation

$$f^{\uparrow/\downarrow}(T) = \{1 \pm \exp\left[(T - T_0^{\uparrow/\downarrow}/\Delta T^{\uparrow/\downarrow})\}^{-1}$$

for that fraction which has disappeared well *above* the transition temperature $T_0^{\uparrow/\downarrow}$. In Table 2, the deduced transition parameters are compared with the values reported from neutron diffraction, electric susceptibility and polarization experiments [1, 15, 16]. Only in the case of the III \rightarrow II transitions have we been able to obtain precise values of $T_0^{\uparrow/\downarrow}$ and $\Delta T^{\uparrow/\downarrow} = 1.7(2)$ K.

We first notice that the widths parameter δT_0 generally decreases for increasing transition temperatures, i. e. $\delta T_0^{\rm IV \to III} \approx 7.5 - 25 \, {\rm K}$, $\delta T_0^{\rm III \to II} = 6 \, {\rm K}$, and $\delta T_0^{\rm II \to I} < 2 \, {\rm K}$. Furthermore, the transition temperatures $T_0^{\rm T/L}$ themselves measured with different methods do not

- [1] T. Mitsui et al., Ferro- and Antiferroelectric Substances, Landolt-Börnstein, Group III, edited by K.-H. Hellwege; Springer-Verlag, Berlin 1969, Vol. 3.; M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon-Press, Oxford 1979.
- [2] Y. Xu, Ferroelectric Mat. and their Applications, North-Holland, Amsterdam 1991.
- [3] D. Damjanovic, Rep. Progr. Phys. 61, 1267 (1998).
- [4] G. L. Catchen, S. J. Wukitch, E. M. Saylor, W. Huebner, and M. Blaskiewicz, Ferroelectrics 117, 175 (1991).
- [5] G. L. Catchen, E. F. Hollinger, J. M. Adams, and R. L. Rasera, Ferroelectrics 156, 239 (1994).

Table 2. Transition parameters in $BaTiO_3$ as obtained with different methods.

Transitio	n T_0^{\uparrow} (K	T_0^{\downarrow} (K	$\delta T_0 (K)$	Method	Ref.
IV→III	202.5	195	7.5	PAC, ¹¹¹ Cd	Present work
	203	178	25	Polarization	
	195	178	17	Susceptibiliy	[15]
III→II*	290.4(2	2) 284.3(3) 6.1(3)	PAC, 111Cd	Present work
	274	269	5	PAC, ¹⁸¹ Ta	[7]
	284	278	6	Neutron diffr.	[16]
	276	270	6	Polarization	
	277	270	7	Susceptibilty	[15]
$II{\rightarrow}I$		389	< 2	PAC, ¹¹¹ Cd	Present work

^{*} $\Delta T^{\uparrow} = 1.6(2) \text{ K}; \Delta T^{\downarrow} = 1.8(3) \text{ K}.$

agree with each other. A possible explanation has been given by Zhong et al. [17] who found that the annealing conditions of the samples determine the grain size and consequently the transition parameters. In this way, changes of $T_0^{\uparrow/\downarrow}$ by as much as 10 K have been observed, if the annealing temperature varies between 1273 K and 1423 K.

In conclusion, we have determined the electric field gradients of dilute ^{111}Cd impurities in polycrystalline BaTiO_3 samples. For each of the known phase transitions, we have deduced the EFG parameters, the transition temperatures $T_0^{\uparrow/\downarrow}$ and, in the case of the orthorhombic \Leftrightarrow tetragonal (III \Leftrightarrow II) transition, the average smoothness parameter $\Delta T^{\uparrow/\downarrow}=1.7(2)$ K. In view of the different values of $T_0^{\uparrow/\downarrow}$ observed with various methods, PAC measurements in single-crystals are required in future experiments. Furthermore, the influence of an external electric field on the EFG parameters also appears to be an interesting extension of the present study.

- [6] G. L. Catchen, E. F. Hollinger, and T. M. Rearick, Z. Naturforsch. 51a, 411 (1996).
- [7] G. Schäfer, P. Herzog, and B. Wolbek, Z. Phys. 257, 336 (1972).
- [8] M. Uhrmacher, V. V. Krishnamurthy, K. P. Lieb, A. López-Garcia, and M. Neubauer, Z. Phys. Chem. 206, 249 (1998).
- [9] P. de la Presa, doctoral thesis, La Plata, Argentina (1997) unpubl.; P. de la Presa, R. E. Alonso, A. Ayala, S. Habenicht, V. V. Krishnamurthy, K. P. Lieb, A. López-Garcia, M. Neubauer, and M. Uhrmacher, J. Phys. Chem. Solids 60, 749 (1999).
- [10] I. J. Baumvol, A. Vasquez, J. Martinez, and F. C. Zawislak, Phys. Stat. Sol. **B79**, K65 (1977); P. de la

- [10] Presa, and A. López-Garcia, Rad. Eff. Def. Solids 140, 141 (1997).
- [11] M. Uhrmacher, K. Pampus, F. J. Bergmeister, D. Purschke, and K. P. Lieb, Nucl. Instr. Meth. B9, 234 (1985); M. Uhrmacher, M. Neubauer, W. Bolse, L. Ziegeler, and K. P. Lieb, Nucl. Instr. Meth. B139, 306 (1998).
- [12] G. Schatz and A. Weidinger, in Nuclear Solid State Physics, Wiley & Sons, New York 1996.
- [13] J. Luthin, K. P. Lieb, B. Lindgren, M. Neubauer, and M. Uhrmacher, Phys. Rev. B57, 15 272 (1998).
- [14] D. Wiarda, M. Uhrmacher, A. Bartos, and K. P. Lieb, J. Phys.: Cond. Matter 5, 4114 (1993).
- [15] W. Merz, Phys. Rev. 76, 1221 (1949).
- [16] H. H. Weider, Phys. Rev. 99, 1161 (1955).
- [17] W. Zhong, P. Zhang, Y. Wang, and T. Ren, Ferroelectrics 160, 55 (1994).